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SURFACES OF DISCONTINUITY FOR A 
CUBICALLY ANISOTROPIC BODY IN THE 
MICROPOLAR THERMOELASTICITY THEORY 

M. D. Martynenko and S. M. Bosyakov UDC 539.3 

We derived an equation for  the propagation o f  thermoelastic waves in cubically anisotropic cont inuous 
media with account  f o r  the asymmetry o f  the stress tensor. By means o f  this equation the exis tence oJ 
longitudinal and  transverse waves o f  displacements and microrotations is established. 

We consider cubically anisotropic bodies for which the thermoelastic potential (with allowance for 
local rotations) has the form [1, 2] 

p~tJ = ~--(AiEkk + 2m2EkkE u + a3Ekl + 2a4Ek/E/k)+ 

+ -~ lgFk.k + 2B2g~.kg~lj + B3q~. I + 2B4g~k.~l s - ~ k ~ T .  (1) 

Here cji = u j i -  ~O~g~m is the tensor of microdeforlnations (micropolar deformations); ~-~= (q~l, ~ ,  q~), u---~= (ut, 
u,, u3), Ak, and Bk are the elastic and micropolar constants; 13 is the thermal-expansion coefficient; T is the 
absolute temperature; ~/j,,, is the Levi-Civita tensor; i, j ,  k, l, m, n = 1, 2, 3. 

From Eq. (1), for the tensors of force and moment stresses we obtain the following expressions: 

3 

tkk = ('41 - A 2 )  ekk +A2 , ~  Eii-  ~ T ,  tkl =A3ek! + A4elk, 
i=l 

3 (2) 

mkk = (B I - B~_) tPk.k + B 2 ~ cpC i , mk! = B4tPkj + B3tPl.k , 

i=1 

k ~ l = l , 3 .  

Substitution of Eq. (2) into the equations of motion [2] gives 

( 3'Uk~ "k' Ol k VrJ'O 

'nlk.l + ~km,,tm,, + 0 lk --J - - ~ - ) =  O. 

As a result, we come to such a resolving system of equations for the components of the displacement and 
microrotation vectors as 
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a2Uk DTk, 
A3UkJI + AUk.kk + (A2 + A4) Uldk + (A3 - A4) gklmlPm.I + Pfk = P at----~__ + 

n3lPkdl + B~k.kk + (B2 + B4) ~)ldk + (A3 - A4) EldmUrn.I - -  

- 2 ( A  3 - A 4 )  {Pk + Plk = J P  - -  

In Eqs. (3) A = A 1 - A  2 - A  3 -A4  and B = BI - B 2 - B 3 - B 4 .  

a2~k 

at 2 

(3) 

The cubically anisotropic bodies behave with respect to their thermal expansion as isotropic bodies, i.e., 
they have one thermal-expansion coefficient [3 and one thermal-conductivity coefficient K [3-5]. Therefore, to 

describe thermal processes in these bodies, we use a hyperbolic heat-conduction law for a disconnected body 
in the form [4, 5] (internal heat sources are absent): 

Xar= ce { bt at'-)' 

where A = a~ + aT. + a3. 

(4) 

Then, with allowance for the temperature effects, system (3) takes the form 

O 

a-u___z~ + ~ r k ,  A3Uk,II + AUk.kk + (A2 + A4) Uldk + (A3 - A4) Eklm(Pm,I + Pfk = P at 2 

B3lPkdl + BlPk,kk + (B2 + B4) {Pl.lk + (A3 - A4) eklmUm,I -- 

a2~k 
- 2 (A 3 - A4) Cpk + pl k = j p  at 2 . (5) 

),AT= e [ at + "t at 2 j .  

Let us assume that the first derivatives of the components of the displacement and microrotation vec- 
tors and absolute temperature have strong discontinuities on a smooth surface Z(t, x b  x2, x3) = O. In this case 

auk aUk aCpk aq~k aT aT 
the derivatives axi' at ' ax; at aXk at i, k 1, 3, are continuous on each side of the surface Z O. Then, 

given the continuity of the functions u, % and T in passage through Z(v, X) the following expressions remain 

continuous [6, 7]: 

(6) 
au i Ou i 

Pk ~ -- PO ~ = Mki ' 

P k ~ - - P o ~ = M k + 3 i + 3  , (7) 

aT aT 
Pk-'~t -- PO-~xk = Mk , (8) 
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where Mki are certain continuous functions, P0 = 3Z/Ot, and Pk = 3Z/OXk, i, k = 1, 3. 
Apart from the kinematic conditions (6)-(8), in passage through the surface of discontinuity the dy- 

namic consistency conditions must be satisfied [6, 7]: 

3 

Z tikPk -- PP0 ~ = M4i, 
~1 

(9) 

3 
3(P i 

~.~ mikPk - PJPo-~t = M4i+3 ' 
k=l 

(lO) 

3 
L ~ 3T 3T --~x kpk -c~  x p o - ~ = M 7 ,  i = 1 , 3 .  (11) 

k=l 

From the system of equations (6)-(11) we can determine all the derivatives of  the first order of ui, cpi, 
T, i = 1, 3. In order to simplify the calculation, we reduce system (6)-(11) to a simpler form. To do this, we 

0U m 0q) m 0T 
multiply Eqs. (9)-(11) by Po and replace the expressions p0--~x n , p0--~-x, ' , and P O ~ x  n, m, n = 1, 3, by the left 

sides of  the equalities 

3u i Ou i 
P k  - M k i  = P o  ' 

OCP i bcp i 
Pk ~ t  -- Mk+3i+3 = PO bx k , 

bT bT 
pk-~t -- Mk = PO -~x k, i , k = l , 3 .  

This leads to the following system of seven equations for the first derivatives of  ui, q)i, and T with respect to t: 

M4iPo:--~t ~A3g +APT-PPo)+(A2+ A4)p,(  ~ t Pj+--~'t PkJ + .... 

O~Pi (B3g2+ Bp~ - jppo)+ (B 2 (~PJ p. O~Pk ] M4i+3P° = ~ + n4)Pi~  ~l J +--~-t Pk) + . . . .  

3T[ ,  2 2) 
M7P° = ~ t  ~'g - ce Xpo + .... j,  i, k = 1, 3 .  (12) 

The unsolvability of system (12) provides the condition for the fact that the partial derivatives of the first order 

bUk 3Uk 3~pk 3Cpk 3T 3T 
3xi' 3 t '  3Xk" 3t ' 3Xk' and ~ t '  i, k = 1, 3, can have discontinuities on the surface Z(t, X) = 0. This means 

that in order to find the equation for the surface of discontinuity, we equate to zero the principal determinant 
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of system (12): det f~ = 0, where ~ is the matrix composed of the coefficients of these derivatives. Finally we 

obtain 

" "3 g2 " 2"  
((A3g- - PP0)" + (A + A 2 + A4) (A3g- - PP0)- + A (A + 2 (A 2 + An)) × 

o 2 ~ -, 9 o o ~ o o 9 
X (A3g" - OPo) (Pl P2 + P2 P3 + Pl P3) + A2 (A + 3 (A 2 + A4)) Pi P2 P_~) x 

" . 2 3  2 " " ~ "  
x ((B3g- -JPPo)  + g (B + B 2 + B4) (B3g- -JPPo)- + B (B + 2 (B 2 + B4) ) x 

9 9 9 9 9 '~ ~ "~ "~ 9 9 9 

X (B3g- -JPPo) (Pl P2 + P2 P3 + Pi P3) + B- (B + 3 (B 2 + B4)) Pl P2 P;) x 

X ( ~ g 2  _ C~: ' t ' po  ) ---- O .  ( 1 3 )  

g 2  " "~ " 
Here = Pi + P5 + P.~. 

It should be noted that Eq. (13) of  the strong discontinuities of  the displacement, rnicrorotation, and 
temperature fields coincides with the equation of  characteristics for system (5). The characteristic equation of 
system (5) can be obtained by assigning the initial data on the surface Z = Z(t, xb x2, x3). For this purpose, we 
pass to new variables from the formulas 

t = Z ( t , X ) ,  x k =Z ~( t ,X ) ,  k = l ,  3 .  (14) 

Then 

Oy(t ,X)  3 ay 3Z i 

Ox, - ~" Ozi O~k' 
i=o 

02y n 02y ON i 3Zj 3 OV O2Z i 

i)=o i=0 

Z - Z 0 ,  t =  x 0 . 

(15) 

O2u k 
Now we substitute formulas (15) into the equations of system (5) and write those terms that contain --~- ,  

O2~pk ~2T 
k =  1,3: 

3 Z  2 '  ~ Z  2 '  

-, v ,~ O2bt k 3 "~ 

~ + . . . = 0 ,  (A3g- + aPk -- PP0) " - ~  + (A2 + An) Pk Z Pi OZ" 
i=-I 

9 3 " 
~-q0 i 

~ " 0-q0------!k + ( B ,  + B 4 )  p~ E Pi ~ + . . . .  O, (B3g- + Bp~ -JPPo) 0~" - ~Z- 
i=l (16) 

32T (Lg2 " 
- c~ xp  o) + . . . .  O .  

OZ- 

1007 



The surface Z = 0 is characteristic for system (16) [6, 7], provided that simultaneously with the initial 
data it does not allow one to determine the second-order time derivatives. This is equivalent to the zero equal- 
ity of  the principal determinant of the system 

where 

det 

f2~ 0-,2 o 
~-~3 ~'~4 0 ----0, 

0 0 f~5 

(17) 

K2 t = Ilaijll , K22=~3---0, ~"~4 = Ilai+3j+311, i , j =  1,3 ;  

aii =A3g- + ('41 - A 3 )  P? - DPo ; 

aij = aji = (A2 + An) Pi Pj ; 

ai+3.i+3 = B3g- + (BI - B3) P? -JOPo ; 

ai+3j+3 = aj+3,i+3 = (B2 + B4) Pi Pj ; 

D, 5 = ~,g2 _ c~ xp~,  i, j = 1, 3 .  

Expanding the determinant, we come to Eq. (13). ____> 
Thus, the fields of the displacement ~ microrotation ¢p, and temperature T with strong discontinuities 

in the first-order partial derivatives at the points of the surface Z(t,  X) = 0 exist in the case where the surface 
Z(t ,  X) = 0 turns out to be characteristic for system (5). 

Equation (13) allows the conclusion that in cubically anisotropic media there are seven types of sur- 
faces of  strong discontinuities that propagate at the velocities v = - p o / g  [5, 6]. We use the following notation: 
vl and v4 for the velocity of the longitudinal waves of displacement and microrotation; (v2, v3) (vs, v6) for the 
velocity of the transverse waves of displacement and microrotation; v for the velocity of the quasiheat wave. 
The equation for determining the velocities of these types of waves can be obtained by dividing both parts of  
Eq. (13) into g14. As a result, we will have 

((A 3 - pv2) 3 + (A + A 2 + A4) (A 3 - pv2) 2 + A (A + 2 (A 2 + A4) ) x 

x (A 3 - pv 2) (cos*- oq cos 2 ot 2 + cos 2 or2_ COS 2 ~3 + cOS2 ~1 cOS2 (7"3-) + 

+ A 2 (A + 3 (A 2 + A4)) COS 2 ~1 cOS2 (7"2 cOS2 (/'3-) X 

x ((B 3 _ j p ~ ) 3  + (B + B 2 + B4) (B 3 - jpv2)  2 + B (B + 2 (B 2 + B4) ) x 

x (B 3 - j p v  2) (cos 2 ~l c°s2 a2 + c°s2 ¢Y'2 c°s2 c~3 + c°s2 oq cos 2 ¢x3) + 

+ B 2 (B + 3 (B 2 + 94) ) cos 2 ~1 cOS2 ~2 cOS2 ~3) (~,g2 _ ce ,~,2) = 0.  (18) 

Assigning the direction of  the normal n-->to the surface element d Z  at the point N, from Eq. (18) it is possible 
to calculate the velocities of propagation of the indicated types of waves. This can be done most simply for 
certain directions of the axes of symmetry of a cubically anisotropic body. Thus, for the axes of  symmetry of  
the fourth and second order we have, respectively [8], 
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c o s ~ l = c o s ~ 2 = 0 ,  cos~3 = 1 ,  (19) 

COS ~1 = 0,  COS 0¢ 2 = COS ~3 = ~ - / 2 .  (20) 

Substituting Eq. (19) into (18), we obtain 

4 ( @  / 4 A("p'-/ 4 [~-~ /  4 B[~-/ VI = ' V2 = V3 = ' P4 = ' V5 = V6 = " 

In the case of Eq. (20) we will have 

4 ( ~ (  -A3 4 (  (AI -A3)2 A2 )/]  
v2, 3 = l + A t 2 + 4 2 + A (A 2 + A4) , 

II 4 = 

4 ( ~ (  gl -83  4 t  (81 ~ B3)2" 82 
V5. 6 = 1 + 2 + , .  +B(B2+B4))I I" 

The velocity of the heat wave v in the micropolar cubically anisotropic medium is equal to "f~-cf~ irrespective 
of the direction chosen inside of the body. 

The method of characteristics used in the present work can be extended to the problems of thermoelas- 
ticity with allowance for the connectedness of displacements-microrotations and temperatures. 

NOTATION 

u---~and ~,, displacement and microrotation vectors; eij, components of the microdeformation tensor; ti¢ 
and m~, components of the tensors of force and moment stresses; Ak, Bk, k = 1, 4, elastic and micropolar con- 
stants; [3, coefficient that relates mechanical and thermal stresses; 13, density of the medium; j, moment of in- 
ertia; plk, Pfk, k = 1, 3, volumetric moments and mass forces; ¢, relaxation time of the heat flux; ~., 
thermal-conductivity coefficient; cE, heat capacity at constant deformation. 
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